

KATEDRA ZARZĄDZANIA PRODUKCJĄ

Instrukcja do zajęć laboratoryjnych z przedmiotu:

Podstawy techniki i technologii

Kod przedmiotu: ISO02123, INO02123

Ćwiczenie Nr 15

POMIARY TENSOMETRYCZNE NAPRĘŻEŃ ZGINAJĄCYCH

(z zastosowaniem LabVIEW)

Autor:

dr inż. Arkadiusz Łukjaniuk

Białystok 2023

Laboratorium "Podstawy techniki i technologii"

Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

Wszystkie nazwy handlowe i towarów występujące w niniejszej instrukcji są znakami towarowymi zastrzeżonymi lub nazwami zastrzeżonymi podanych w tekście firm

Laboratorium "Podstawy techniki i technologii"

Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

lem ćwiczenia jest zapoznanie studentów z istotą i zastosowaniem pomiarów tensometrycznych oraz nauczenie podstawowych zasad wykorzystywania w miernictwie wielkości nieelektrycznych komputerowych systemów pomiarowych na przykładzie *LabVIEW*.

1. Przygotowanie do pomiarów mostka tensometrycznego NI USB-9162

W celu dokonania pomiarów odkształceń przy pomocy mostka tensometrycznego National Instruments NI USB-9162 należy uruchomić program LabVIEW SignalExpress. Następnie wybrać rodzaj mierzonej wielkości w następującej kolejności: Add Step \rightarrow Acquire Signals \rightarrow DAQmx Acquire \rightarrow Analog Input \rightarrow Strain (w naszym przypadku pomiar odkształceń – strain – rys. 1) \rightarrow "+"cDAQ 1Mod1 (NI 9237).

Rys. 1. Wybór rodzaju mierzonej wielkości oraz modułu pomiarowego.

Laboratorium "Podstawy techniki i technologii"

Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

Następnie należy przeprowadzić wybór i konfigurację odpowiednich kanałów mostka. W tym celu należy zaznaczyć kursorem np. kanał **ai0** (rys.2) i potwierdzić **"OK.".**

Rys. 2. Wybór kanału mostka tensometrycznego.

Po pojawieniu się okna jak na rys. 3 należy przeprowadzić ustawienia danego kanału, a mianowicie:

- > wprowadzić wartość rezystancji tensometru (R= 120,1 Ω);
- wprowadzić wartość stałej tensometru (k=2,13);
- wpisać rozmiar bloku próbek (Samples to Read –1000) i częstotliwość próbkowania (Rate –4000);

B 0- -1- 01:00:00,000 01:00:25,000 01:00:50,000 01:01:15,000 01:01:40,000 01:02:05,000 01:02:05,000 01:02:55,000 01:03: Graph ♥ Display Type AutoScale Y-Axis ♥	20
Configuration Triggering Advanced Timing Execution Control Channel Settings Details > Strain Setup Strain Strain Setup Signal Input Range Cext_all Max 1m Strain Max 1m Gage Gage Strain Vinin -1m Strain Gage Gage Initial Factor Vex Source Vex Value Strain Configuration Internal 2,5 Internal 2,5 Full Bridge I Lead Resistance Custom Scaling O	

Rys. 3. Parametry kanału mostka tensometrycznego.

wybrać konfigurację mostka (Half Bridge I – pomiar naprężeń zginających i parametrów ruchu drgającego - rys.4).

Configuration Triggering Advanced Timing Execution Control
Channel Settings
🕂 🔀 😼 🕖 Details 💓 🔷 Strain Setup
Strain
Signal Input Range Max 1m Strain Min -1m Strain Gage Gage Initial
Factor Resistance Voltage
Click the Add Channels button (+) to add more channels to the task.
Timing Settings Half Bridge II
Acquisition Mode Samples to Read Hair Bridge II Continuous Samples 25k Quarter Bridge I

Rys. 4. Wybór konfiguracji mostka tensometrycznego.

W celu dodania następnych kanałów należy uaktywnić przycisk "+" (rys.4) i zaznaczyć odpowiedni kanał (np. **ai1** – rys. 5). Kanał będzie miał takie same ustawienia jak poprzednio skonfigurowany kanał (uaktywnić pozostałe kanały).

Rys. 5. Aktywacja kolejnych kanałów mostka tensometrycznego.

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

Opcja **Connection Diagram** (rys. 6) pokazuje sposób podłączenia tensometrów do mostka NI USB-9162.

Rys. 6. Podłączenie tensometrów do mostka tensometrycznego.

Po wykonaniu tych czynności należy włączyć pomiary (opcja RUN w lewym górnym rogu ekranu). Następnie należy otworzyć okno wizualizacji wyników pomiaru **Data View** (rys. 7) i wybrać niezbędne do wyświetlania numery kanałów (opcje: Signals \rightarrow Add Signal \rightarrow nr kanału). Usuwanie niepotrzebnych do prezentacji kanałów odbywa się przy pomocy opcji **Remove Signals.**

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających" Nietrudno zauważyć, że obserwowane przebiegi pomimo braku obciążenia wskazują wartości różne od "0". W celu wyzerowania przebiegów należy:

➤ wyskalować (rys. 8 - Add Step → Processing → Analog Signals → Scaling and Conversion);

Untitled 1 - LabVIEW S	igna	IExpress				
<u>File Edit View T</u> ools	Ad	d <u>S</u> tep <u>O</u> perate <u>W</u> i	ndo	ow Data View <u>H</u> elp		
🕒 Add Step 🔞 Run 🝷		Acquire Signals	٠			
Project		Generate Signals	•)ata View		
Monitor / Record		Create Signals	•	d Display 👻 Export To	-	Properties
		Load/Save Signals	•	Graph		
Idle		Processing	•	Analog Signals 🕨		Filter
		Analysis	۲	Digital Signals 🕨		Scaling and Conversion
Select the "Add Step		Execution Control	٠			Subset and Resample
to perform acquisitio		Run LabVIEW VI	•		2	Time Averaging
	×	Favorites	٠			Window
			4.		1.00 1000	Arithmetic
			3.		5-(b)	Formula
			2.			Interactive Alignment
			1.		COLOR TOTAL	Convert Analog to Digital

Rys.8. Aktywacja opcji skalowania.

➢ kolejność operacji - rys. 9: klikamy Input →Strain → wybieramy pierwszy kanał - cDAQ 1Mod1_ai0, następnie klikamy Configuration i w okienku "Pre=gain-offset" wpisujemy z przeciwnym znakiem i odpowiednią literą średnią wartość górnego przebiegu → Enter → dolny przebieg powinien oscylować wokół zera. Powtarzamy to samo dla pozostałych kanałów;

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających" Następnie wchodzimy do opcji wizualizacji przebiegów (rys.7) i usuwamy aktywne przebieg, a w ich miejsce wstawiamy przebiegi wyskalowane (scaled). Powinniście uzyskać przebiegi jak na rysunku 10.

Rys.10. Wizualizacja przebiegów po skalowaniu.

Tak uzyskane przebiegi trzeba wyeksportować do arkusza **Excel** (przy aktywnym oknie **Data View** klikając prawym przyciskiem myszki otwieramy okno jak na rys. 11 i wybieramy **Export to** \rightarrow **Microsoft Excel**. Zapisać te dane jako "0" przed pomiarem. Uzyskane w ten dane możemy obrabiać w dowolny sposób według reguł pracy w arkuszu Excel. W realizowanym ćwiczeniu potrzebne jest obliczenie wartości średniej wyeksportowanych do Excela przebiegów. Jest też możliwość wyliczenia wartości średniej obserwowanego przebiegu w programie **SignalExpress.** Znalezienie tej opcji zostawiam ćwiczącym (wtedy nie jest potrzebne eksportowanie danych pomiarowych do arkusza Excel i tam obliczania wartości średniej).

Rys.11. Eksport danych do arkusza Excel.

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

2. Pomiar naprężeń zginających przy pomocy mostka tensometrycznego NI USB-9162

- 1. Połączyć tensometry do odpowiednich kanałów mostka NI USB-9162 (rys.12).
- 2. Przeprowadzić konfigurację systemu zgodnie z instrukcją (tensometry są w układzie półmostkowym).

Rys.12. Schemat ideowy układu do pomiaru naprężeń zginających.

- 3. Wygasić ewentualne drgania belki (belka nieobciążona).
- 4. Zanotować do tabeli 1 wartości odkształceń w poszczególnych kanałach mostka (lub przeprowadzić zerowanie wskazań kanałów poprzez użycie operacji skalowania te punkty były wykonane w poprzednim rozdziale).
- 5. Delikatnie zawiesić na końcu belki odważnik o masie wskazanej przez prowadzącego ćwiczenie i stłumić oscylacje belki i zanotować lub wyeksportować do Excela wskazania poszczególnych kanałów mostka.
- 6. Przeprowadzić pomiary dla pozostałych wartości obciążeń wskazanych przez prowadzącego ćwiczenie.
- 7. Obliczyć wielkości podane w tabeli 1 i przeprowadzić analizę uzyskanych rezultatów.

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

- 8. Sporządzić na jednym wykresie: $\sigma_p = f(F)$ i $\sigma_o = f(F)$ dla wszystkich kanałów pomiarowych.
- 9. Sporządzić na jednym wykresie (wykres kolumnowy): $\delta = f(F)$ dla wszystkich kanałów pomiarowych.
- 10. Przeanalizować uzyskane zależności i wskazać przyczyny błędów.

			Ch ()				Ch 1					Ch 2)						
m	3	E 0	σp	σ	δ	3	E 0	σp	σ	δ	3	E 0	σp	σ	δ	3	E 0	σp	σ0	δ
kg	μD	μD	MPa	MPa	%	μD	μD	MPa	MPa	%	μD	μD	MPa	MPa	%	μD	μD	MPa	MPa	%
0																				
0,5																				
1,0																				
1,25																				
1,5																				
1,75																				
2,0																				
2,25																				
2,5																				
2,75																				
3,0																				
1=	m	; b=		m;	h=		m;	$x_1 =$		m; :	$\mathbf{x}_2 =$]	m; x	3=	n	1; X 4 [:]	=	m;		

Tabela 1.

Wartość odkształcenia ϵ_{o} w wybranym punkcie belki x obliczamy ze wzoru:

$$\varepsilon_o = \frac{6F(l-x)}{Ebh^2},\tag{1}$$

1 ' ר	·1 1 · 1	• 1	11	
		1000 no ha		
\mathcal{L}	SI1A UZIA1A	iaca na De		IINI.
8-2		<i>jų</i>		L* 'J?

- b szerokość belki w [m];
- h wysokość belki w [m];
- E moduł Younga (dla stali 2,1*10⁵ MPa);

1- odległość zawieszenia ciężarka od zamocowania belki [m];

x – współrzędna naklejenia tensometrów.

Dokładną wartość naprężeń σ_0 wyznaczamy z zależności:

$$\sigma_{o} = \frac{M_{g}(x)}{W_{g}}, W_{g} = \frac{bh^{2}}{6}, M_{g}(x) = F(l-x), \qquad (2)$$

Laboratorium "Podstawy techniki i technologii"

Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

natomiast wartość naprężeń uzyskanych przy pomocy pomiarów obliczamy na podstawie:

$$\sigma_p = \varepsilon_p E \tag{3}$$

Ugięcie belki w miejscu odległym o \mathbf{x} od zamocowania wynosi:

$$f_o = \frac{Fx^2(3l-x)}{6EJ_z}, \quad J_z = \frac{bh^3}{12}.$$
 (4)

Różnicę względną pomiędzy naprężeniami wyznaczonymi zgodnie z zależnościami (2) i (3) obliczyć należy korzystając ze wzoru:

$$\delta = \frac{\sigma_o - \sigma_p}{\sigma_o} \cdot 100\%$$

3. Pytania kontrolne

- 1. Podaj definicję odkształcenia jednostkowego ε.
- 2. Podaj definicję naprężenia jednostkowego σ.
- 3. Podaj i skomentuj wzór określający prawo Hooke'a.
- 4. Podaj związek, jaki występuje między naprężeniem jednostkowym i odkształceniem jednostkowym.
- 5. Wyjaśnij zasadę działania tensometru oporowego.
- 6. Jakie parametru drutu oporowego zmieniają się w wyniku rozciągania (ściskania) tego drutu?
- 7. Wymień rodzaje tensometrów i narysuj budowę jednego z nich.
- 8. Wymień i skomentuj przyczyny błędów pomiarów tensometrycznych.
- 9. Narysuj układ półmostkowy używany w pomiarach tensometrycznych i przeanalizuj jego wady i zalety

4. Literatura

- 1. Miłek M.: Pomiary wielkości nieelektrycznych metodami elektrycznymi: podręcznik akademicki, Zielona Góra: Politechnika Zielonogórska, 1998
- 2. Chwaleba A., Czajewski J.: *Przetworniki pomiarowe wielkości fizycznych* Oficyna Wydawnicza Politechniki Warszawskiej 1993.
- 3. Chwaleba A., Czajewski J.: *Przetworniki pomiarowe wielkości fizycznych* Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1993.
- 4. Chwaleba A. i inni: Metrologia elektryczna WNT, Warszawa 2011.
- 5. W. Nawrocki: Systemy i sensory pomiarowe. WPP, Poznań 2001.

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"

WYMAGANIA BHP

Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z instrukcją BHP i instrukcją przeciw pożarową oraz przestrzeganie zasad w nich zawartych. Wybrane urządzenia dostępne na stanowisku laboratoryjnym mogą posiadać instrukcje stanowiskowe. Przed rozpoczęciem pracy należy zapoznać się z instrukcjami stanowiskowymi wskazanymi przez prowadzącego.

W trakcie zajęć laboratoryjnych należy przestrzegać następujących zasad.

- Sprawdzić, czy urządzenia dostępne na stanowisku laboratoryjnym są w stanie kompletnym, nie wskazującym na fizyczne uszkodzenie.
- Sprawdzić prawidłowość połączeń urządzeń.
- Załączenie napięcia do układu pomiarowego może się odbywać po wyrażeniu zgody przez prowadzącego.
- Przyrządy pomiarowe należy ustawić w sposób zapewniający stałą obserwację, bez konieczności nachylania się nad innymi elementami układu znajdującymi się pod napięciem.
- Zabronione jest dokonywanie jakichkolwiek przełączeń oraz wymiana elementów składowych stanowiska pod napięciem.
- Zmiana konfiguracji stanowiska i połączeń w badanym układzie może się odbywać wyłącznie w porozumieniu z prowadzącym zajęcia.
- W przypadku zaniku napięcia zasilającego należy niezwłocznie wyłączyć wszystkie urządzenia.
- Stwierdzone wszelkie braki w wyposażeniu stanowiska oraz nieprawidłowości w funkcjonowaniu sprzętu należy przekazywać prowadzącemu zajęcia.
- Zabrania się samodzielnego włączania, manipulowania i korzystania z urządzeń nie należących do danego ćwiczenia.
- W przypadku wystąpienia porażenia prądem elektrycznym należy niezwłocznie wyłączyć zasilanie stanowisk laboratoryjnych za pomocą wyłącznika bezpieczeństwa, dostępnego na każdej tablicy rozdzielczej w laboratorium. Przed odłączeniem napięcia nie dotykać porażonego.

Laboratorium "Podstawy techniki i technologii" Ćw. Nr15 "Pomiary tensometryczne naprężeń zginających"